Magnetophoretic position detection for multiplexed immunoassay using colored microspheres in a microchannel.
نویسندگان
چکیده
This paper demonstrates a new magnetophoretic position detection method for multiplexed immunoassay using colored microspheres as an encoding tool in a microchannel. Colored microspheres conjugated with respective capture molecules are incubated with a mixture of target analytes, followed by reaction with the probe molecules which had been conjugated with superparamagnetic nanoparticles (SMNPs). Under the magnetic field gradient, the resulting microspheres are deflected from their focused streamlines in a microchannel, and respective colored microspheres are detected using color charge-coupled device (CCD) in a specific detection region of the microchannel. The color and position of respective colored microspheres are automatically decoded and analyzed by MATLAB program, and the position was correlated with the concentration of corresponding target analytes. As a proof-of-concept, we attempted to assay simultaneously three types of biotinylated immunoglobuline Gs (IgGs), such as goat, rabbit and mouse IgGs, using colored microspheres (red, yellow and blue, respectively). As the capture molecules, corresponding anti-IgGs were employed and target analytes were probed using streptavidin-modified superparamagnetic nanoparticles. As a result, three analytes were simultaneously assayed using colored microspheres with high accuracy, and detection limits of goat IgG, rabbit IgG and mouse IgG were estimated to be 10.9, 30.6 and 12.1fM, respectively. In addition, with adjustment of the flow rate and detection zone, the dynamic range could be controlled by more than one order of magnitude.
منابع مشابه
Magnetophoretic Position Detection for Multiplexed Immunoassays Using Colored Microspheres
This paper presents a new magnetophoretic position detection method for multiplexed immunoassay using colored microspheres for encoding of target analytes and superparamagnetic nanoparticles (SMNPs) for quantitative analysis. Under the magnetic field gradient, reacted microspheres are deflected as much as analytes and SMNPs are conjugated with them. The positions of colored microspheres were co...
متن کاملMagnetophoretic immunoassay of allergen-specific IgE in an enhanced magnetic field gradient.
We demonstrate a novel magnetophoretic immunoassay of allergen-specific immunoglobulin E (IgE) based on the magnetophoretic deflection velocity of a microbead that is proportional to the associated magnetic nanoparticles under enhanced magnetic field gradient in a microchannel. In this detection scheme, two types of house dust mites, Dermatophagoides farinae (D. farinae) and Dermatophagoides pt...
متن کاملTheoretical analysis of a magnetophoresis-diffusion T-sensor immunoassay.
We present the analytical investigation of a microfluidic homogeneous competitive immunoassay that incorporates antibody-conjugated superparamagnetic nanoparticles and magnetophoretic transport to enhance the limits of detection and dynamic range. The analytical model considers the advective, diffusive, and magnetophoretic transport of the antibody-coated nanoparticles relative to the labeled a...
متن کاملMultiplex suspension array for human anti-carbohydrate antibody profiling.
Glycan-binding antibodies form a significant subpopulation of both natural and acquired antibodies and play an important role in various immune processes. They are for example involved in innate immune responses, cancer, autoimmune diseases, and neurological disorders. In the present study, a microsphere-based flow-cytometric immunoassay (suspension array) was applied for multiplexed detection ...
متن کاملMicrofluidic barcode assay for antibody-based confirmatory diagnostics.
Confirmatory diagnostics offer high clinical sensitivity and specificity typically by assaying multiple disease biomarkers. Employed in clinical laboratory settings, such assays confirm a positive screening diagnostic result. These important multiplexed confirmatory assays require hours to complete. To address this performance gap, we introduce a simple 'single inlet, single outlet' microchanne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biosensors & bioelectronics
دوره 24 7 شماره
صفحات -
تاریخ انتشار 2009